2,070 research outputs found

    Photospheric Signatures of Granular-scale Flux Emergence and Cancellation at the Penumbral Boundary

    Full text link
    We studied flux emergence events of sub-granular scale in a solar active region. New Solar Telescope (NST) of Big Bear Solar Observatory made it possible to clearly observe the photospheric signature of flux emergence with very high spatial (0".11 at 7057{\AA}) and temporal (15 s) resolution. From TiO observations with the pixel scale of 0".0375, we found several elongated granule-like features (GLFs) stretching from the penumbral filaments of a sunspot at a relatively high speed of over 4 km s-1. After a slender arched darkening appeared at a tip of a penumbral filament, a bright point (BP) developed and quickly moved away from the filament forming and stretching a GLF. The size of a GLF was approximately 0.5" wide and 3" long. The moving BP encountered nearby structures after several minutes of stretching, and a well-defined elongated shape of a GLF faded away. Magnetograms from SDO/HMI and NST/IRIM revealed that those GLFs are photospheric indicators of small-scale flux emergence, and their disappearance is related to magnetic cancellation. From two well-observed events, we describe detailed development of the sub-structures of GLFs, and different cancellation processes that each of the two GLFs underwent.Comment: Accepted for publication in The Astrophysical Journa

    Non-adiabatic collapse of a quasi-spherical radiating star

    Full text link
    A model is proposed of a collapsing quasi-spherical radiating star with matter content as shear-free isotropic fluid undergoing radial heat-flow with outgoing radiation. To describe the radiation of the system, we have considered both plane symmetric and spherical Vaidya solutions. Physical conditions and thermodynamical relations are studied using local conservation of momentum and surface red-shift. We have found that for existence of radiation on the boundary, pressure on the boundary is not necessary.Comment: 8 Latex pages, No figures, Revtex styl

    Isotropic cosmological singularities: other matter models

    Get PDF
    Isotropic cosmological singularities are singularities which can be removed by rescaling the metric. In some cases already studied (gr-qc/9903008, gr-qc/9903009, gr-qc/9903018) existence and uniqueness of cosmological models with data at the singularity has been established. These were cosmologies with, as source, either perfect fluids with linear equations of state or massless, collisionless particles. In this article we consider how to extend these results to a variety of other matter models. These are scalar fields, massive collisionless matter, the Yang-Mills plasma of Choquet-Bruhat, or matter satisfying the Einstein-Boltzmann equation.Comment: LaTeX, 19 pages, no figure

    Apparent horizons in the quasi-spherical Szekeres models

    Full text link
    The notion of an apparent horizon (AH) in a collapsing object can be carried over from the Lema\^{\i}tre -- Tolman (L--T) to the quasispherical Szekeres models in three ways: 1. Literally by the definition -- the AH is the boundary of the region, in which every bundle of null geodesics has negative expansion scalar. 2. As the locus, at which null lines that are as nearly radial as possible are turned toward decreasing areal radius RR. These lines are in general nongeodesic. The name "absolute apparent horizon" (AAH) is proposed for this locus. 3. As the boundary of a region, where null \textit{geodesics} are turned toward decreasing RR. The name "light collapse region" (LCR) is proposed for this region (which is 3-dimensional in every space of constant tt); its boundary coincides with the AAH. The AH and AAH coincide in the L--T models. In the quasispherical Szekeres models, the AH is different from (but not disjoint with) the AAH. Properties of the AAH and LCR are investigated, and the relations between the AAH and the AH are illustrated with diagrams using an explicit example of a Szekeres metric. It turns out that an observer who is already within the AH is, for some time, not yet within the AAH. Nevertheless, no light signal can be sent through the AH from the inside. The analogue of the AAH for massive particles is also considered.Comment: 14 pages, 9 figures, includes little extensions and style corrections made after referee's comments, the text matches the published versio

    Geometry of the quasi-hyperbolic Szekeres models

    Full text link
    Geometric properties of the quasi-hyperbolic Szekeres models are discussed and related to the quasi-spherical Szekeres models. Typical examples of shapes of various classes of 2-dimensional coordinate surfaces are shown in graphs; for the hyperbolically symmetric subcase and for the general quasi-hyperbolic case. An analysis of the mass function M(z)M(z) is carried out in parallel to an analogous analysis for the quasi-spherical models. This leads to the conclusion that M(z)M(z) determines the density of rest mass averaged over the whole space of constant time.Comment: 19 pages, 13 figures. This version matches the published tex

    Imaging Spectropolarimetry with IBIS II: on the fine structure of G-band bright features

    Full text link
    We present new results from first observations of the quiet solar photosphere performed through the Interferometric BIdimensional Spectrometer (IBIS) in spectropolarimetric mode. IBIS allowed us to measure the four Stokes parameters in the FeI 630.15 nm and FeI 630.25 nm lines with high spatial and spectral resolutions for 53 minutes; the polarimetric sensitivity achieved by the instrument is 0.003 the continuum intensity level. We focus on the correlation which emerges between G-band bright feature brightness and magnetic filling factor of ~ 1000 G (kG) fields derived by inverting Stokes I and V profiles. More in detail, we present the correlation first in a pixel-by-pixel study of an approximatively 3 arcsec wide bright feature (a small network patch) and then we show that such a result can be extended to all the bright features found in the dataset at any instant of the time sequence. The higher the kG filling factor associated to a feature the higher the brightness of the feature itself. Filling factors up to about 35 % are obtained for the brightest features. Considering the values of the filling factors derived from the inversion analysis of spectropolarimetric data and the brightness variation observed in G-band data we put forward an upper limit for the smallest scale over which magnetic flux concentrations in intergranular lanes produce a G-band brightness enhancement (~ 0.1''). Moreover, the brightness saturation observed for feature sizes comparable to the resolution of the observations is compatible with large G-band bright features being clusters of sub-arcsecond bright points. This conclusion deserves to be confirmed by forthcoming spectropolarimetric observations at higher spatial resolution.Comment: 10 pages, 7 figures, 1 table - Accepted for publication on Ap

    Horizontal supergranule-scale motions inferred from TRACE ultraviolet observations of the chromosphere

    Full text link
    We study horizontal supergranule-scale motions revealed by TRACE observation of the chromospheric emission, and investigate the coupling between the chromosphere and the underlying photosphere. A highly efficient feature-tracking technique called balltracking has been applied for the first time to the image sequences obtained by TRACE (Transition Region and Coronal Explorer) in the passband of white light and the three ultraviolet passbands centered at 1700 {\AA}, 1600 {\AA}, and 1550 {\AA}. The resulting velocity fields have been spatially smoothed and temporally averaged in order to reveal horizontal supergranule-scale motions that may exist at the emission heights of these passbands. We find indeed a high correlation between the horizontal velocities derived in the white-light and ultraviolet passbands. The horizontal velocities derived from the chromospheric and photospheric emission are comparable in magnitude. The horizontal motions derived in the UV passbands might indicate the existence of a supergranule-scale magnetoconvection in the chromosphere, which may shed new light on the study of mass and energy supply to the corona and solar wind at the height of the chromosphere. However, it is also possible that the apparent motions reflect the chromospheric brightness evolution as produced by acoustic shocks which might be modulated by the photospheric granular motions in their excitation process, or advected partly by the supergranule-scale flow towards the network while propagating upward from the photosphere. To reach a firm conclusion, it is necessary to investigate the role of granular motions in the excitation of shocks through numerical modeling, and future high-cadence chromospheric magnetograms must be scrutinized.Comment: 5 figures, accepted by Astronomy & Astrophysic

    Degeneracies when T=0 Two Body Matrix Elements are Set Equal to Zero and Regge's 6j Symmetry Relations

    Full text link
    The effects of setting all T=0 two body interaction matrix elements equal to a constant (or zero) in shell model calculations (designated as =0=0) are investigated. Despite the apparent severity of such a procedure, one gets fairly reasonable spectra. We find that using =0=0 in single j shell calculations degeneracies appear e.g. the I=1/2−I={1/2} ^{-} and 13/2−{13/2}^{-} states in 43^{43}Sc are at the same excitation energies; likewise the I=32+3_{2}^{+},72+7_{2}^{+},91+^{+}_{1} and 101+^{+}_{1} states in 44^{44}Ti. The above degeneracies involve the vanishing of certain 6j and 9j symbols. The symmetry relations of Regge are used to explain why these vanishings are not accidental. Thus for these states the actual deviation from degeneracy are good indicators of the effects of the T=0 matrix elements. A further indicator of the effects of the T=0 interaction in an even - even nucleus is to compare the energies of states with odd angular momentum with those that are even
    • …
    corecore